ORGANIC LETTERS

2006 Vol. 8, No. 16 ³⁴⁸⁹-**³⁴⁹²**

Enantioselective Synthesis of Tetra-ortho-Substituted Axially Chiral Biaryls through Rhodium-Catalyzed Double [2 ⁺ **²** ⁺ **2] Cycloaddition**

Goushi Nishida,† Nanami Suzuki,† Keiichi Noguchi,‡ and Ken Tanaka*,†

*Department of Applied Chemistry, Graduate School of Engineering, and Instrumentation Analysis Center, Tokyo Uni*V*ersity of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan*

tanaka-k@cc.tuat.ac.jp

Received May 11, 2006

ABSTRACT

We have established an enantioselective synthesis of both C² symmetric and unsymmetric tetra-ortho-substituted axially chiral biaryls through rhodium-catalyzed double [2 ⁺ **²** ⁺ **2] cycloaddition (up to >99% ee). This method serves as an attractive new route to enantioenriched tetra-ortho-substituted axially chiral biaryls in view of the one-step access to substrate diynes and tetraynes starting from readily available alkynes.**

Tetra-*ortho*-substituted biaryls, having highly stable axial chirality, are valuable structures for chiral ligands used in a variety of asymmetric reactions,¹ and various enantioselective methods for their synthesis have been reported to date.² In general, these are based on transition-metal-catalyzed crossor homo-coupling of two aryl units where the axial chirality is constructed at the formation of the aryl-aryl bond.³⁻⁹ The enantioselective coupling of sterically encumbered 2,6 disubstituted arenes, which furnishes tetra-*ortho*-substituted

[†] Department of Applied Chemistry.

[‡] Instrumentation Analysis Center.

⁽¹⁾ For a review of chiral biaryl-type bisphosphine ligands, see: Shimizu, H.; Nagasaki, I.; Saito, T. *Tetrahedron* **2005**, *61*, 5405.

⁽²⁾ For reviews, see: (a) Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. *Angew. Chem., Int. Ed*. **2005**, 44, 5384. (b) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. *Chem. Re*V. **²⁰⁰²**, *¹⁰²*, 1359. (c) Lloyd-Williams, P.; Giralt, E. *Chem. Soc. Re*V. **²⁰⁰¹**, *³⁰*, 145. (d) Bolm, C.; Hildebrand, J. P.; Muz, K.; Hermanns, N. *Angew. Chem., Int. Ed*. **2001**, *40*, 3284. (e) Bringmann, G.; Walter, R.; Weirich, R. *Angew. Chem., Int. Ed. Engl.* **1990**, *29*, 977.

⁽³⁾ For Kumada coupling, see: (a) Hayashi, T.; Hayashizaki, K.; Kiyoi, T.; Ito, Y. *J. Am. Chem. Soc.* **1988**, *110*, 8153. (b) Hayashi, T.; Hayashizaki, K.; Ito, Y. *Tetrahedron Lett*. **1989**, *30*, 215.

⁽⁴⁾ For Suzuki coupling, see: (a) Nicolaou, K. C.; Li, H.; Boddy, C. N. C.; Ramanjulu, J. M.; Yue, T.-Y.; Natarajan, S.; Chu, X.-J.; Bräse, S.; Rübsam, F. *Chem. Eur. J.* 1999, 5, 2584. (b) Cammidge, A. N.; Crépy, K. V. L. *Chem. Commun*. **2000**, 1723. (c) Yin, J.; Buchwald, S. L. *J. Am. Chem. Soc*. **2000**, *122*, 12051. (d) Castanet, A.-S.; Colobert, F.; Broutin, P.-E.; Obringer, M. *Tetrahedron*: *Asymmetry* **2002**, *13*, 659. For a review of the asymmetric Suzuki coupling route to axially chiral biaryls, see: Baudoin, O. *Eur. J. Org. Chem*. **²⁰⁰⁵**, 4223-4229.

⁽⁵⁾ For oxidative coupling, see: (a) Brussee, J.; Jansen, A. C. A. *Tetrahedron Lett.* **1983**, *24*, 3261. (b) Smrcina, M.; Lorenc, M.; Hanus, V.; Kocovsky, P. *Synlett* **1991**, 231. (c) Smrcina, M.; Vyskocil, S.; Maca, B.; Polásek, M.; Claxtone, T. A.; Abbott, A. P.; Kocovsky, P. *J. Org. Chem.* **1994**, *59*, 2156. (d) Nakajima, M.; Kanayama, K.; Miyoshi, I.; Hashimoto, S.-I. *Tetrahedron Lett*. **1995**, *36*, 9519. (e) Nakajima, M.; Miyoshi, I.; Kanayama, K.; Hashimoto, S.; Noji, M.; Koga, K. *J. Org. Chem.* **1999**, *64*, 2264. (f) Saito, S.; Kano, T.; Muto, H.; Nakadai, H.; Yamamoto, H. *J. Am. Chem. Soc*. **1999**, *121*, 8943. (g) Chu, C.-Y,; Hwang, D.-R.; Wang, S.-K.; Uang, B.-J. *Chem. Commun*. **2001**, 980. (h) Li, X.; Yang, J.; Kozlowski, M. C. *Org. Lett.* **2001**, *3*, 1137. (i) Luo, Z.; Liu, Q.; Gong, L.; Cui, X.; Mi, A.; Jiang, Y. *Chem. Commun*. **2002**, 914. (j) Barhate, N. B.; Chen, C.-T. *Org. Lett.* **2002**, *4*, 2529. (k) Luo, Z.; Liu, Q.; Gong, L.; Cui, X.; Mi, A.;

biaryls, has been realized in several examples, e.g., nickelor palladium-catalyzed cross-coupling of *unfunctionalized* 2,6-disubstituted arenes,3,4b oxidative homo-coupling of 2-naphthol derivatives,⁵ and Grignard cross-coupling of dibenzothiophenes.7 However, the efficient catalytic method, which can be applicable to the enantioselective synthesis of *functionalized* axially chiral tetra-*ortho*-substituted biaryls, is an important challenge.

Recently, a new approach to the synthesis of axially chiral tri-*ortho*-substituted biaryls has been developed, which is based on an enantioselective $[2 + 2 + 2]$ cycloaddition^{10,11} between internal alkynes bearing an *ortho*-substituted phenyl group and nitriles,¹² isocyanates,¹³ or alkynes.¹⁴⁻¹⁸ We anticipated that an enantioselective two-step synthesis of C_2 symmetric tetra-*ortho*-substituted axially chiral biaryls could be realized through double $[2 + 2 + 2]$ cycloaddition of electron-deficient 1,6-diynes, prepared in one step from readily available terminal 1,6-diynes, with 1,3-diynes (Scheme 1, Type-1) or ether-linked tetraynes, prepared in one step

from readily available 2,4-hexadiyne-1,6-diol, with electrondeficient monoynes (Scheme 1, Type-2).¹⁹ In this Com-

Jiang, Y. *Angew. Chem.*, *Int. Ed.* **2002**, *41*, 4532. (l) Chu, C.-Y.; Uang, B.-J. *Tetrahedron*: *Asymmetry* **2003**, *14*, 53. (m) Li, X.; Hewgley, J. B.; Mulrooney, C. A.; Yang, J.; Kozlowski, M. C. *J. Org. Chem*. **2003**, *68*, 5500 and references therein.

(6) For cross-coupling of biaryl ditriflates, see: (a) Hayashi, T.; Niizuma, S.; Kamikawa, T.; Suzuki, N.; Uozumi, Y. *J. Am. Chem. Soc*. **1995**, *117*, 9101. (b) Kamikawa, T.; Uozumi, Y.; Hayashi, T. *Tetrahedron Lett*. **1996**, *37*, 3161. (c) Kamikawa, T.; Hayashi, T. *Tetrahedron* **1999**, *55*, 3455.

(7) For asymmetric ring-opening of dinaphthothiophene by Grignard cross-coupling, see: (a) Shimada, T.; Cho, Y.-H.; Hayashi, T. *J. Am. Chem. Soc*. **2002**, *124*, 13396. (b) Cho, Y.-H.; Kina, A.; Shimada, T.; Hayashi, T. *J. Org. Chem*. **2004**, *69*, 3811.

(8) For asymmetric ring-opening of biaryl lactones, see: (a) Bringmann, G.; Breuning, M.; Tasler, S. *Synthesis* **1999**, 525. (b) Bringmann, G.; Breuning, M.; Pfeifer, R.-M.; Schenk, W. A.; Kamikawa, K.; Uemura, M. *J. Organomet. Chem*. **2002**, *661*, 31. (c) Bringmann, G.; Tasler, S.; Pfeifer, R.-M.; Breuning, M. *J. Organomet*. *Chem*. **2002**, *661*, 49.

(9) For utilization of planar chiral arene chromium complex, see: (a) Watanabe, T.; Tanaka, Y.; Shoda, R.; Sakamoto, R.; Kamikawa, K.; Uemura, M. *J. Org. Chem*. **2004**, *69*, 4152. (b) Kamikawa, K.; Sakamoto, T.; Tanaka, Y.; Uemura, M. *J. Org. Chem*. **2003**, *68*, 9356 and references therein.

munication, we describe an enantioselective synthesis of functionalized tetra-*ortho*-substituted axially chiral biaryls through rhodium-catalyzed double $[2 + 2 + 2]$ cycloaddition.

We first investigated the reaction of electron-deficient malonate-derived 1,6-diyne **1a** and 1,3-diyne **2a** in the presence of various $Rh(I)^{+}/modified-BINAP$ complexes (Type-1).20 We were pleased to find that the use of 5% Rh- $(I)^{+/}(S)$ -Segphos $[(4,4'-bi-1,3-benzodioxole)-5,5'-diylbis (diphenylphosphine)²¹ complex furnished the corresponding$ C_2 symmetric tetra-*ortho*-substituted biaryl (-)-3aa in 59% yield with >99% ee (Table 1, entry 1). Not only diacetoxy-

^a Isolated yield. *^b* Isolated yield of mono-annulation product **4** (Scheme 2).

substituted 2,4-hexadiyne **2a** but also dimethoxy-substituted

(10) For recent reviews, see: (a) Kotha, S.; Brahmachary, E.; Lahiri, K. *Eur. J. Org. Chem*. **2005**, 4741. (b) Yamamoto, Y. *Curr. Org. Chem*. **2005**, *⁹*, 503. (c) Varela, J.; Saa´, C. *Chem. Re*V*.* **²⁰⁰³**, *¹⁰³*, 3787. (d) Saito, S.; Yamamoto, Y. *Chem. Rev.* 2000, *100*, 2901. (e) Malacria, M.; Aubert, C.; Renaud J. L. In *Science of Synthesis: Houben-Weyl Methods for Molecular* Renaud J. L. In *Science of Synthesis: Houben-Weyl Methods for Molecular Transformations*; Lautens, M., Trost, B. M., Eds.; Georg Thieme Verlag: New York, 2001; Vol. 1, pp 439-530. (f) Fujiwara, M.; Ojima, I. In *Modern Rhodium-Catalyzed Organic Reactions*; Evans, P. A., Ed.; Wiley: New York, 2005; Chapter 7, pp 129-150.

(11) For chirality transfer benzannulation, see: (a) Vorogushin, A. V.; Wulff, W. D.; Hansen, H.-J. *J. Am. Chem. Soc*. **2002**, *124*, 6512. (b) Nishii, Y.; Wakasugi, K.; Koga, K.; Tanabe, Y. *J. Am. Chem. Soc*. **2004**, *126*, 5358.

(12) Gutnov, A.; Heller, B.; Fischer, C.; Drexler, H.-J.; Spannenberg, A.; Sundermann, B.; Sundermann, C. *Angew. Chem., Int. Ed*. **2004**, *43*, 3795.

(13) Tanaka, K.; Wada, A.; Noguchi, K. *Org. Lett*. **2005**, *7*, 4737.

(14) For Ir, see: (a) Shibata, T.; Fujimoto, T.; Yokota, K.; Takagi, K. *J. Am. Chem.* Soc. **2004**, *126*, 8382. (b) Shibata, T.; Tsuchikama, K. *Chem. Commun*. **2005**, 6017.

(15) For Rh, see: (a) Tanaka, K.; Nishida. G.; Wada, A.; Noguchi, K. *Angew. Chem., Int. Ed*. **2004**, *43*, 6510. (b) Tanaka, K.; Nishida, G.; Ogino, M.; Hirano, M.; Noguchi, K. *Org. Lett*. **2005**, *7*, 3119.

(16) For enantioselective synthesis of axially chiral anilides through Rhcatalyzed $[2 + 2 + 2]$ cycloaddition, see: Tanaka, K.; Takeishi, K.; Noguchi, K. *J. Am. Chem. Soc*. **2006**, *128*, 4586.

 (17) For Rh(I)⁺/modified-BINAP-catalyzed chemo- and regioselective intermolecular alkyne cyclotrimerization, see: (a) Tanaka, K.; Shirasaka, K. *Org. Lett*. **2003**, *5*, 4697. (b) Tanaka, K.; Toyoda, K.; Wada, A.; Shirasaka, K.; Hirano, M. *Chem. Eur. J.* **2005**, *11*, 1145.

(18) For pioneering work for rhodium-catalyzed cross-alkyne cyclotrimerization, see: (a) Müller, E. Synthesis 1974, 761. (b) Grigg, R.; Scott, R.; Stevenson, P. *J. Chem. Soc*., *Perkin Trans. 1* **1988**, 1357.

2,4-hexadiyne **2b** are suitable substrates in this process, and biaryl $(-)$ -3ab was obtained in 48% yield with 98% ee (entry 2). In these reactions, mono-annulation products were generated as byproducts. The use of 1,6-diyne **1b**, having no quaternary center in the tether, furnished mono-annulation product **4** in 56% yield as a major product, although biaryl (+)-**3ba** was obtained in 30% yield with >99% ee (entry 3). The X-ray crystallographic analysis revealed the *R* configuration for the biaryl (+)-**3ba** (Figure 1).

Figure 1. ORTEP diagram of (R) - $(+)$ -3ba.

The isolated mono-annulation product **4** could be used for the enantioselective complete intermolecular $[2 + 2 + 2]$ cycloaddition with diethyl acetylenedicarboxylate (**5a**) using 10% $Rh(I)^{+}/(R)$ -BINAP complex as catalyst, and unsymmetrical tetra-*ortho*-substituted biaryl $(-)$ -6 was obtained in 94% yield with 93% ee (Scheme 2).15b

Next, the reaction of terminal tetrayne **7a** with electrondeficient monoyne **5b** was investigated (Type-2). After screening various $Rh(I)^{+}/modified-BINAP$ complexes, we found that the use of 5% $Rh(I)^+/ (S)$ -Segphos complex furnished the corresponding C_2 symmetric axially chiral biaryl (+)-**8ab** with excellent ee (98% ee), although the yield was low (Table 2, entry 1). The use of methyl-substituted

^a Isolated yield. *^b* Isolated as a mixture of **8ac** and another regioisomer. Yield of **8ac** was determined by 1H NMR. The corresponding diol of **8ac** was isolated in pure form in 77% isolated yield from **8ac** by treatment with LiAlH₄.

internal tetrayne **7b** or terminal monoyne **5c** instead of **7a** or **5c** increased the yield of the corresponding biaryls to 52% or 44%, respectively, but decreased the ee to 69% or 70% (entries 2 and 3). The X-ray crystallographic analysis revealed *^S* configuration for the biaryl (+)-**8bb** (Figure 2). Importantly, this double $[2 + 2 + 2]$ cycloaddition could be applied to the axially chiral bipyridine synthesis using ethyl cyanoformate **5d**, which furnished bipyridine (+)-**8bd** in

⁽¹⁹⁾ Some achiral double $[2 + 2 + 2]$ cycloadditions were reported. For biaryls, see: (a) Yamamoto, Y.; Arakawa, T.; Ogawa, R.; Itoh, K. *J. Am. Chem. Soc*. **2003**, *125*, 12143. (b) Saino, N.; Kogure, D.; Okamoto, S. *Org. Lett*. **2005**, *7*, 3065. For bipyridines, see: (c) Varela, J. A.; Castedo, L.; Maestro, M.; Mahia, J.; Saa`, C. *Chem. Eur. J*. **2001**, *7*, 5203. (d) Yamamoto, Y.; Ogawa, R.; Itoh, K. *J. Am. Chem. Soc.* **2001**, *123*, 6189.

⁽²⁰⁾ The use of 1,6-diynes having no alkoxycarbonyl group did not furnish the desired biaryls.

⁽²¹⁾ Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.; Kumobayashi, H. *Ad*V*. Synth. Catal*. **²⁰⁰¹**, *³⁴³*, 264.

Figure 2. ORTEP diagram of $(S)-(+)$ -8bb.

38% yield with 98% ee, although achiral regioisomers were generated in >50% yield (entry 4). Furthermore, the reaction of phenyl-substituted tetrayne **7c** with isocyanate **5e** furnished bipyridone $(-)$ -**8ce** in 89% yield with 52% ee (entry 5).

Interestingly, the reaction of phenyl-substituted tetrayne **7c** with **5b** in the presence of 5% $Rh(I)^{+}/(S)$ -Segphos complex furnished mono-annulation product **9** in 35% yield, and no corresponding biaryl was generated. The use of Rh- (I)+/BINAP complex improved the yield of **9** to 52%. The isolated mono-annulation product **9** could be used for the enantioselective $[2 + 2 + 2]$ cycloaddition with nitrile 5d and isocyanate **5e** using $Rh(I)^{+}/(S)$ -Segphos complex as catalyst, which furnished axially chiral aryl pyridine (+)-**¹⁰** in 76% yield with 98% ee and axially chiral aryl pyridone (+)-**¹¹** in 63% yield with 67% ee, respectively (Scheme 3).

In conclusion, we have established an enantioselective synthesis of both *C*² symmetric and unsymmetric tetra-*ortho*substituted axially chiral biaryls through rhodium-catalyzed double $[2 + 2 + 2]$ cycloaddition. This method serves as an attractive new route to enantioenriched tetra-*ortho*-substituted axially chiral biaryls in view of the one-step access to substrate diynes and tetraynes starting from readily available

alkynes. Expanding the scope and exploration of the mechanism of enantioselection are currently under investigation.

Acknowledgment. This work was supported by Asahi Glass Fundation and Uehara Memorial Fundation. We thank Takasago International Corporation for the gift of Segphos.

Supporting Information Available: Experimental procedures, compound characterization data, and X-ray crystallographic files in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0611550